
	 1	

Implementing an

Artificial Neural Network
to Recognize Handwritten Digits

New Mexico
Supercomputing Challenge

Final Report
April 4, 2018

Team Number 201
Los Alamos High School

Team Members:
Sam Crooks

Project Mentor:
Jacob Stinnett

	 2	

Table of Contents

Executive Summary……………………………………………………………………………3

1. Introduction…………………………………………………………………………….4

2. Background Research………………………………………………………………….4

3. Problem Description……………………………………………………………………5

4. Objective………………………………………………………………………………...3

5. Algorithm Design……………………………………………………………………….6

5.1 Data Processing……………………………………………………………..6

5.2 Neural Network Structure…………………………………….……………7

5.3 Training……………………………………………………………………...8

6. Performance Analysis and Optimization…………………………………………….10

6.1 Accuracy and Error Graphs……………………………………………...10

6.2 Optimization……………………………………………………………….11

6.3 Applying the Model to the Real World…………………………………..12

7. Conclusion……………………………………………………………………………..13

8. Acknowledgements……………………………………………………………………13	

9. References……………………………………………………………………………...14	

10. Source	Code……………………………………………………………………………15	

	 3	

Executive Summary

Computer vision is a rapidly developing field of computer science which aims to

autonomously identify objects from digital images and videos. One widely used approach in

computer vision is an artificial neural network, which was inspired by the structure of biological

neurons in the brain. The objective of this project was to implement an artificial neural network

algorithm that could learn to accurately classify handwritten digits.

The algorithm was programmed in Anaconda Python and includes the following stages:

data processing, defining the neural network structure, training to optimize the weight and bias

matrices, and performance analysis. During data processing, each 28 by 28 pixelated digit is

stored as a CSV file and is converted to an input vector. Then, 42,000 labeled handwritten digits

from the MNIST dataset are divided into 30,000 training examples and 12,000 test examples.

Next, the parameters of the neural network (weights and biases) are initialized. During the

training stage, the parameters of the neural network update by gradient descent, where the goal is

to minimize a cost function.

After 100 training iterations, the best performing structure correctly classified 97.4% of

the test dataset. To evaluate the performance, accuracy and cost were graphed as a function of

iterations.

Further work includes varying the number of hidden layers in the neural network,

implementing more advanced machine learning techniques, and training the algorithm to

recognize other symbols and objects. Applications of this technology include reading addresses

on postage, processing images of checks, and autonomous vehicles.

	 4	

1. Introduction

Computer vision is a rapidly developing field of computer science which aims to

autonomously identify objects from digital images and videos. When humans look at symbols

and objects, their brains effortlessly recognize them. Similar to the way cone cells in human eyes

are used to recognize objects, computer vision systems view objects as pixelated images. One

specific task within computer vision is to recognize and classify handwritten digits. In this

project, a machine learning technique called an artificial neural network is implemented to

recognize handwritten digits.

Figure 1: Pixelated image is recognized as the number two

2. Background Research

 Simple logical rules cannot accurately classify handwritten digits. Rather than explicitly

programming rules, machine learning techniques provide systems with the ability to learn and

make accurate predictions on their own. The type of machine learning technique implemented in

this project is an artificial neural network. An artificial neural network is a model inspired by the

structure of biological neurons in the brain [3]. Neural networks are a highly researched and

developed field, and there are a variety of neural network structures.

2

	 5	

 A feed-forward, fully-connected artificial neural network consists of a number of artificial

neurons arranged into layers. The first layer (the input layer) receives input from the real world,

and the last layer is the calculated predictions. Each middle (hidden) layer processes the output

of the previous layer. Each neuron is connected to each other neuron in neighboring layers by a

weight. By adjusting the weights and biases of the network to minimize a cost function, the

neural network learns to classify images.

3. Problem Description

One specific type of computer image recognition involves recognizing human

handwriting. It can be challenging for a computer algorithm to recognize handwritten digits

because not only can the specific pixel values of one digit greatly differ across images of the

same digit, but images of different digits may also look very similar. In order to implement a

machine learning algorithm for digit recognition, the algorithm must learn from numerous

labeled training examples.

4. Objective

 The objective of this project is to implement an artificial neural network algorithm that can

learn to accurately classify handwritten digits (zero through nine) from the MNIST dataset.

	 6	

5. Algorithm Design

5.1 Data Processing

Figure 2: Data Processing Flowchart

A version of the MNIST (Modified National Institute of Standards and Technology)

dataset contains 42,000 labeled digits stored as a CSV file [2]. Each digit is 28 by 28 pixels, for a

total of 784 pixels. Each row stores each digit’s data. The first column contains a label, and the

remaining 784 columns are the pixel values corresponding to the digit. Each pixel value ranges

from 0 (black) to 255 (white).

 In this stage, images are converted into data that the computer can interpret. First, each

digit image is converted to a 28 by 28 matrix. Second, all of the pixel values are put into a list.

Third, each pixel value is divided by 255 to normalize the list to values between 0 and 1. Figure

2 demonstrates this process.

0 0
0 0
0 0
0 0
0 0 0 0 0 0 0 0 0 0 0 0 63 171 253 253 170 63 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 73 73 176 237 253 252 252 252 238 175 21 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 27 120 252 252 252 252 237 215 221 252 253 252 71 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 181 252 252 252 252 252 62 0 16 190 253 252 71 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 119 252 205 103 0 0 0 0 16 191 253 252 71 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 5 35 20 0 0 0 0 0 37 252 253 189 10 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 150 252 253 76 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 155 252 252 191 15 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 47 233 253 253 84 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 109 252 241 97 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 21 212 252 195 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 144 253 252 71 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 32 212 253 255 35 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 115 252 252 159 5 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 99 242 252 231 41 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 252 252 252 108 0 0 0 0 0 42 125 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 16 191 253 253 232 109 171 253 253 253 255 253 253 253 255 180 0 0 0 0 0
0 0 0 0 0 0 0 161 252 252 252 252 252 253 252 252 252 253 252 252 252 180 128 0 0 0 0 0
0 0 0 0 0 0 0 155 236 252 252 252 252 237 215 195 71 72 71 71 71 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 62 252 210 128 252 62 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0
0 0
0 0
0 0

0
0
0 . . .
63
171
253 . . .
0
0
0

0	
0	
0	. . .

0.247	
0.671	
0.992	. . .
0	
0	
0	
	

784
Total

Handwritten Digit Pixel Values as 28x28 Matrix Pixel Values as
784x1 List

Input Vector to
Neural Network

	 7	

 The 42,000 labeled digits were divided into 30,000 training examples and 12,000 testing

examples. The training examples are used to develop the predictive model, and the testing

examples are used to evaluate the performance of the model.

5.2 Neural Network Structure

This neural network structure consists of three layers. Each neuron in the network is a

function that outputs a value between 0 and 1 depending on the outputs of all the neurons in the

previous layer. The first layer outputs the data of the digits after processing and the last layer’s

output indicates a confidence that the given image corresponds to each digit 0 through 9. There

Figure 3: Neural Network Diagram

	 8	

are a total of 40 biases and 23,820 weights in this network that can be adjusted. Each weight is

initialized to a random number between -0.01 and 0.01. Each bias is initialized to 0.

5.3 Training

A single training iteration exposes the neural network to the entire training dataset, and

this consists of forward propagation and backward propagation. Training is done through a

process called gradient descent. During forward propagation, each digit input vector in the

training dataset is sent through the neural network and predictions are made. During backward

propagation, the weights and biases of the neural network adjust to minimize error.

Forward Propagation:

During forward propagation, each of the digit input vectors is sent through the neural

network. First, each neuron receives a weighted sum of the output from the previous layer. Then,

each neuron activates depending on its input; the sigmoid function outputs a value between 0 and

1. These operations are performed with matrices.

	 9	

Backward Propagation:

The goal of backward propagation is to minimize the error function. The error function

used is cross-entropy cost [4]:

	

M is the number of training examples
y is a 10 by 1 target matrix that corresponds to the label of a digit (the expectation as to what the
neural network should output)
a(2) is a 10 by 1 matrix that contains the activations of the output layer (confidences of a digit)

 To minimize the cost function, the algorithm calculates the derivatives of the cost with

respect to each adjustable parameter in the model: w2, b2, w1, b1 using chain rule.

Ex:

Then, those parameters are adjusted in the direction to minimize the cost.

Ex:

w2 contains adjustable parameters in the model.
a is the learning rate and determines the leap size during gradient descent.

 is the derivative of the cost function with respect to w2

	 10	

6. Performance Analysis and Optimization

6.1 Accuracy and Error Graphs

 To evaluate the performance, the accuracy on the training set, the accuracy on the testing

dataset, and the cost were graphed as a function of training iterations.

 The shape of the graph in Figure 6 decreases quickly during the initial iterations and

gradually flattens out. The shape of the graphs in Figures 4 and 5 increase quickly during the

Figure 4: Plot of testing accuracy after 10 training
iterations

Figure 5: Plot of testing and training accuracy
after 100 training iterations

Figure 6: Plot of cost (error) per digit after 100
training iterations

	 11	

initial iterations and gradually flatten out. As the parameters update to reach a minimum of error,

the derivative of the cost function with respect to each parameter was expected to be, on average,

flatter. Thus, the neural network was expected to learn at a gradually decreasing rate. These

results demonstrate the neural network is effectively being trained on the dataset.

6.2 Optimization

To optimize the neural network, the number of hidden neurons was varied in the neural

network.

Figure 7: Accuracy on test dataset after 100 training iterations for varying number of

hidden neurons.

Figure 8: Comparison to other published methods [1]

 The best performing structure was the neural network with 270 hidden neurons. After 100

training iterations, it correctly classified 97.4% of the test dataset. A possible explanation for

why the accuracy of the neural network structure with 810 hidden neurons was lower than the

	 12	

that of 270 hidden neurons could be due to overfitting. Overfitting occurs when a model learns

the patterns and noise in training data to the extent that it negatively impacts accuracy on data it

has never seen.

6.3 Applying the Model to the Real World

To test the model on my own handwritten digits, the following steps were conducted.

First, a digit was handwritten on a piece of paper using a pen. Second, a PNG image file of the

digit was scanned by creating a signature in the desktop application Preview. Third, code was

written to load the digit into the program and process from an image file to an input vector.

Fourth, the input vector was sent through the neural network (forward propagation) and it

produced a prediction. The figures below display the handwritten digit after scanning and the

neural network’s confidences given that digit.

Figure 9: Scanned handwritten digit and output layer activation (digit confidences)
bar plot from model

	 13	

7. Conclusion

During this project, a neural network was implemented that could accurately classify

digits from the MNIST dataset. This algorithm was programmed in Anaconda Python without

any neural network libraries. Future projects could possibly improve the accuracy of this neural

network by varying the number of hidden layers or by implementing more advanced techniques

(regularization, deep learning). In addition, future projects could train the model using different

or more complex datasets containing letters, symbols, shapes, etc. Even further, applications of

this technique include reading addresses on postage, processing images of checks, and

autonomous vehicles.

8. Acknowledgements

I appreciate the Los Alamos Mesa Public Library for providing quiet space with fast

internet. I thank my mentor, Jacob Stinnett, for offering great guidance, helping me debug code

(even late at night), and teaching me calculus concepts that I needed to understand for my

project.

	 14	

9. References

 [1] Y. LeCun, C. Cortes, and C. Burges, “MNIST Handwritten Digit Database,” [Online].
Available at: http://yann.lecun.com/exdb/mnist/. [Accessed 14 Jan. 2018].

[2] “Digit Recognizer,” Kaggle, 2013. [Online]. Available at: https://www.kaggle.com/c/digit-
recognizer. [Accessed 14 Jan. 2018].

[3] XeronStack, “Overview of Artifical Neural Networks and its Applications,” Medium, July
16, 2017. [Online]. Available at: https://medium.com/@xenonstack/overview-of-artificial-
neural-networks-and-its-applications-2525c1addff7. [Accessed 14 Jan. 2018].

[4] Michael A. Nielsen, “Neural Networks and Deep Learning”, Determination Press, 2015

	 15	

10. Source Code

Code was written in Anaconda Python using Jupyter Notebook.
In [1]:

 #Load the csv file into a numpy data matrix

import numpy as np

import matplotlib.pyplot as plt

import csv

data = [] # Create empty data matrix

#Load csv file into data ---

with open('digitData.csv') as csvfile:

 readCSV = csv.reader(csvfile, delimiter=',')

 for row in readCSV:

 if len(row) != 0:

 data = data + [row]

#---

data = np.asarray(data) #Convert the regular array to numpy array

print(data)

print("done")

[['label' 'pixel0' 'pixel1' ... 'pixel781' 'pixel782' 'pixel783']
 ['1' '0' '0' ... '0' '0' '0']
 ['0' '0' '0' ... '0' '0' '0']
 ...
 ['7' '0' '0' ... '0' '0' '0']
 ['6' '0' '0' ... '0' '0' '0']
 ['9' '0' '0' ... '0' '0' '0']]
done

In [2]:

#Visualize original digits

displayPixelValues = data[23][1:] #Gather all pixel values from first dat
a point

displayPixelValues = np.reshape(displayPixelValues, (-1, 28)) #Reshape dat
a to 28 by 28 array instead of 784 by 1 array

displayPixelValues = displayPixelValues.astype(np.int) #Convert the data i
nto integers from strings

#print(displayPixelValues) #Print out array of single digit

	 16	

plt.matshow(displayPixelValues, fignum=10,cmap=plt.cm.gray) #Make grayscal
e representation of digit

plt.show() #Show grayscale representation of digit

In [3]:

#Sigmoid function

def sigmoid(x):

 return 1/(1+np.exp(-x))

In [4]:

np.random.seed(2)

layer0_neurons = 784 #Number of pixels = 784

layer1_neurons = 270 #Number of middle layer neurons. I picked 30 for now

layer2_neurons = 10 #Output neurons here.

 #The activation of the output neurons are the "guesses
"

#Initialize random weights and biases

layer1_b = np.zeros((layer1_neurons,1))#Initialize layer_1 biases to 0. Th
is is a 270 by 1 matrix

layer1_w = (2*np.random.random((layer1_neurons,layer0_neurons)) - 1) / 100
#Initialize layer_1 weights to a value between -.01 and .01 This is a 270
by 784 matrix

layer2_b = np.zeros((layer2_neurons,1)) #Initialize layer_2 biases to 0. T
his is a 10 by 1 matrix

layer2_w = (2*np.random.random((layer2_neurons,layer1_neurons)) - 1) / 100
#Initialize layer_2 weights to to a value between -.01 and .01 This is a 1
0 by 270 matrix

In [5]:

#Function evaluates accuracy given predictions, targets, weights, and bias
es

def evaluateNetworkAccuracy(x,y,w1,b1,w2,b2):

 z_1 = np.dot(w1,x)+b1

 a_1 = sigmoid(z_1)

	 17	

 z_2 = np.dot(w2,a_1)+b2

 a_2 = sigmoid(z_2)

 predictions = np.argmax(a_2, axis = 0)

 #print(predictions)

 return(np.sum(np.equal(y,predictions))/len(y))

In [6]:

#Separation of training (Xdata) and testing (Xtest) digits

trainingSize = 30000 #Number of training sample

Xdata = data[1:trainingSize+1,1:] #Get pixel values of data samples

Xdata = Xdata.T #Transpose - Make columns rows and rows columns

Xdata = Xdata.astype(np.int) #Convert values from string to integer

Xdata = Xdata/255 #Remap grayscale values (normalize)

Xtest = data[trainingSize+1:,1:]

Xtest = Xtest.T #Transpose - Make columns rows and rows columns

Xtest = Xtest.astype(np.int) #Convert values from string to integer

Xtest = Xtest/255 #Remap grayscale values (normalize)

labels = data[1:,0].astype(np.int) #Get labels of each digit an numpy lis
t

Xdata.shape

Out[6]:
(784, 30000)

In [7]:

#Cost function; If labels highly differ from targets, cost is high

def cross_entropy_cost(y, a):

 error = np.multiply(y,np.log(a)) + np.multiply((1-y),np.log((1-a)))

 errorSum = np.sum(error)

 meanErrorSum = -errorSum/(y.shape[1])

 return meanErrorSum

In [7]:

#Get target matricies from labels

nData = len(data) - 1

target = np.zeros([10,nData])

for i in range(nData):

 target[labels[i],i] = 1

	 18	

trainingTarget = target[:,:trainingSize]

testTarget = target[:,trainingSize:]

In [8]:

accList=[] #List keeps track of training accuracy

testAccList = [] #List keeps track of test accuracy

def trackAccuracyAndCost():

 cost = cross_entropy_cost(batchTarget,a_2)

 costList.append(cost)

 #print(cost)

 acc = evaluateNetworkAccuracy(Xdata,labels[0:trainingSize],layer1_w,la
yer1_b,layer2_w,layer2_b)

 accList.append(acc)

 testAcc = evaluateNetworkAccuracy(Xtest,labels[trainingSize:],layer1_w
,layer1_b,layer2_w,layer2_b)

 testAccList.append(testAcc)

In [11]:

accList=[] #List keeps track of training accuracy

testAccList = [] #List keeps track of test accuracy

costList = [] #List keeps track of cost

#Initialize random weights and biases

layer1_b = np.zeros((layer1_neurons,1))#Initialize layer_1 biases to 0. Th
is is a 784 by 1 matrix

layer1_w = (2*np.random.random((layer1_neurons,layer0_neurons)) - 1) /100
#Initialize layer_1 weights to a value between -.01 and .01 This is a 30 b
y 784 matrix

layer2_b = np.zeros((layer2_neurons,1)) #Initialize layer_2 biases to 0. T
his is a 30 by 1 matrix

layer2_w = (2*np.random.random((layer2_neurons,layer1_neurons)) - 1) /100
#Initialize layer_2 weights to to a value between -.01 and .01 This is a 1
0 by 30 matrix

iterations = 9 #Number of times NN is exposed to entire dataset

chunkSize = 256 #Number in digits in a batch

learningRate = 0.00075

#Calculate Accuracy before training (Iteration 0)

acc = evaluateNetworkAccuracy(Xdata,labels[0:trainingSize],layer1_w,layer1
_b,layer2_w,layer2_b)

accList.append(acc)

testAcc = evaluateNetworkAccuracy(Xtest,labels[trainingSize:],layer1_w,lay
er1_b,layer2_w,layer2_b)

testAccList.append(testAcc)

	 19	

print('Iter 0','Training Accuracy: ',acc,'Testing Accuracy: ', testAcc)

for i in range(1, iterations+1):

 chunk = chunkSize

 while(chunk <= trainingSize):

 batch = Xdata[:,chunk - chunkSize: chunk] #Get batch of trai
ning data

 batchTarget = target[:,chunk - chunkSize: chunk] #Get targets of b
atch

 #Forward Propagation

 z_1 = np.dot(layer1_w,batch)+layer1_b

 a_1 = sigmoid(z_1)

 z_2 = np.dot(layer2_w,a_1)+layer2_b

 a_2 = sigmoid(z_2)

 #Back Propagation: Derivative Calculations

 der_a2 = -np.divide(batchTarget,a_2) + np.divide(1-batchTarget, 1-
a_2)

 der_z2 = der_a2*a_2*(1-a_2)

 der_w2 = np.dot(der_z2,a_1.T)

 der_b2 = np.sum(der_z2,axis = 1,keepdims=True)/trainingSize

 der_a1 = np.dot(layer2_w.T,der_z2)

 der_z1 = der_a1*a_1*(1-a_1)

 der_w1 = np.dot(der_z1,batch.T)

 der_b1 = np.sum(der_z1,axis = 1,keepdims=True)/trainingSize

 #Back Propagation: Parameter Update

 layer2_w = layer2_w - learningRate*der_w2

 layer2_b = layer2_b - learningRate*der_b2

 layer1_w = layer1_w - learningRate*der_w1

 layer1_b = layer1_b - learningRate*der_b1

 chunk+=100

 if(i % 1 == 0):

 cost = cross_entropy_cost(batchTarget,a_2)

 acc = evaluateNetworkAccuracy(Xdata,labels[0:trainingSize],layer1_
w,layer1_b,layer2_w,layer2_b)

	 20	

 testAcc = evaluateNetworkAccuracy(Xtest,labels[trainingSize:],laye
r1_w,layer1_b,layer2_w,layer2_b)

 trackAccuracyAndCost()

 print('Iter',i,'Training Accuracy: ', acc,'Testing Accuracy: ', te
stAcc)

Iter 0 Training Accuracy: 0.11106666666666666 Testing Accuracy: 0.112666
66666666666
Iter 1 Training Accuracy: 0.8087333333333333 Testing Accuracy: 0.8061666
666666667
Iter 2 Training Accuracy: 0.8776333333333334 Testing Accuracy: 0.8761666
666666666
Iter 3 Training Accuracy: 0.8946666666666667 Testing Accuracy: 0.8946666
666666667
Iter 4 Training Accuracy: 0.9033666666666667 Testing Accuracy: 0.90425
Iter 5 Training Accuracy: 0.9096666666666666 Testing Accuracy: 0.90875
Iter 6 Training Accuracy: 0.9145 Testing Accuracy: 0.9120833333333334
Iter 7 Training Accuracy: 0.9185666666666666 Testing Accuracy: 0.9163333
333333333
Iter 8 Training Accuracy: 0.9227666666666666 Testing Accuracy: 0.9196666
666666666
Iter 9 Training Accuracy: 0.9261 Testing Accuracy: 0.9245

In [11]:

#Display Accuracy Plot

plt.plot(np.arange(0,10,1), testAccList)

plt.suptitle('Accuracy vs Training Iterations')

plt.ylabel('Cost')

plt.xlabel('Iterations')

plt.ylim((0,1))

plt.show()

In [68]:

	 21	

from PIL import Image

im = Image.open("userImage11.png")

#im.show()

digitArray = np.asarray(list(im.getdata()))

userDigit = []

for i in range(len(digitArray)):
 pixel = digitArray[i]

 #print(pixel)

 pixelBrightness = pixel[0]*0.299 + pixel[1]*0.587 + pixel[2]*0.114

 pixelBrightness = (-(pixelBrightness) + 255)

 userDigit.append(pixelBrightness)

maxVal = np.max(userDigit)

userDigit = userDigit/maxVal

userDigit = np.reshape(userDigit, (-1, 1))

userDigit = np.power(userDigit, .25)

displayUserDigit = np.reshape(userDigit, (-1, 28)) #Reshape data to 28 by
28 array instead of 784 by 1 array

plt.matshow(displayUserDigit, fignum=10,cmap=plt.cm.gray) #Make grayscale
representation of digit

plt.show() #Show grayscale representation of digit

In [69]:

def blur(input_image):

 input_shape = input_image.shape

 output_image = np.zeros(input_shape) + input_image

 n_row = input_image.shape[0]

 n_col = input_image.shape[1]

	 22	

 for i in range(n_row):

 for j in range(n_col):

 pixelVal = input_image[i,j]

 pixel_add = pixelVal * 1

 if i >0:

 pixel_top = (i-1, j)

 output_image[i-1,j] += pixel_add

 if i < n_row-1:

 pixel_bot = (i+1, j)

 output_image[i+1,j] += pixel_add

 if j > 0 :

 pixel_left = (i, j-1)

 output_image[i,j-1] += pixel_add

 if j < n_col -1:

 pixel_right = (i,j+1)

 output_image[i,j+1] += pixel_add

 return output_image / np.max(output_image)

In [70]:

processedImage = blur(displayUserDigit)

#processedImage = blur(processedImage) #blur again if wanted

plt.matshow(processedImage, cmap=plt.cm.gray) #Make grayscale representati
on of digit

plt.show() #Show grayscale representation of digit

testImage = np.reshape(processedImage, (784,1))

testImage = np.power(testImage, .75)

	 23	

In [71]:

#Forward propagation of user's digit

z_1 = np.dot(layer1_w,testImage)+layer1_b

a_1 = sigmoid(z_1)

z_2 = np.dot(layer2_w,a_1)+layer2_b

a_2 = sigmoid(z_2)

In [72]:

#Display confidences (aka guesses) for the given digit by the user

x = ['0','1','2','3','4','5','6','7','8','9']

plt.bar(x,a_2[:,0])

plt.title('Digit Confidences')

plt.ylabel('Output Activation Value')

plt.xlabel('Digit')

plt.ylim([0,1])

plt.show()

