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Executive Summary 

 
Computer vision is a rapidly developing field of computer science which aims to 

autonomously identify objects from digital images and videos. One widely used approach in 

computer vision is an artificial neural network, which was inspired by the structure of biological 

neurons in the brain. The objective of this project was to implement an artificial neural network 

algorithm that could learn to accurately classify handwritten digits. 

The algorithm was programmed in Anaconda Python and includes the following stages: 

data processing, defining the neural network structure, training to optimize the weight and bias 

matrices, and performance analysis. During data processing, each 28 by 28 pixelated digit is 

stored as a CSV file and is converted to an input vector. Then, 42,000 labeled handwritten digits 

from the MNIST dataset are divided into 30,000 training examples and 12,000 test examples. 

Next, the parameters of the neural network (weights and biases) are initialized. During the 

training stage, the parameters of the neural network update by gradient descent, where the goal is 

to minimize a cost function. 

After 100 training iterations, the best performing structure correctly classified 97.4% of 

the test dataset. To evaluate the performance, accuracy and cost were graphed as a function of 

iterations.  

Further work includes varying the number of hidden layers in the neural network, 

implementing more advanced machine learning techniques, and training the algorithm to 

recognize other symbols and objects. Applications of this technology include reading addresses 

on postage, processing images of checks, and autonomous vehicles. 
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1.  Introduction 
 

Computer vision is a rapidly developing field of computer science which aims to 

autonomously identify objects from digital images and videos. When humans look at symbols 

and objects, their brains effortlessly recognize them. Similar to the way cone cells in human eyes 

are used to recognize objects, computer vision systems view objects as pixelated images. One 

specific task within computer vision is to recognize and classify handwritten digits. In this 

project, a machine learning technique called an artificial neural network is implemented to 

recognize handwritten digits. 

 
 

 

 

 

Figure 1: Pixelated image is recognized as the number two 

 

2.  Background Research 
 
     Simple logical rules cannot accurately classify handwritten digits. Rather than explicitly 

programming rules, machine learning techniques provide systems with the ability to learn and 

make accurate predictions on their own. The type of machine learning technique implemented in 

this project is an artificial neural network. An artificial neural network is a model inspired by the 

structure of biological neurons in the brain [3]. Neural networks are a highly researched and 

developed field, and there are a variety of neural network structures. 

2 
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     A feed-forward, fully-connected artificial neural network consists of a number of artificial 

neurons arranged into layers. The first layer (the input layer) receives input from the real world, 

and the last layer is the calculated predictions. Each middle (hidden) layer processes the output 

of the previous layer. Each neuron is connected to each other neuron in neighboring layers by a 

weight. By adjusting the weights and biases of the network to minimize a cost function, the 

neural network learns to classify images.  

 
3.  Problem Description 

 
One specific type of computer image recognition involves recognizing human 

handwriting. It can be challenging for a computer algorithm to recognize handwritten digits 

because not only can the specific pixel values of one digit greatly differ across images of the 

same digit, but images of different digits may also look very similar. In order to implement a 

machine learning algorithm for digit recognition, the algorithm must learn from numerous 

labeled training examples. 

4.  Objective 
 

     The objective of this project is to implement an artificial neural network algorithm that can 

learn to accurately classify handwritten digits (zero through nine) from the MNIST dataset.  
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5.  Algorithm Design 
 

5.1 Data Processing 
 

 
 
 
 
 
 

 
 

Figure 2: Data Processing Flowchart 

 
A version of the MNIST (Modified National Institute of Standards and Technology) 

dataset contains 42,000 labeled digits stored as a CSV file [2]. Each digit is 28 by 28 pixels, for a 

total of 784 pixels. Each row stores each digit’s data. The first column contains a label, and the 

remaining 784 columns are the pixel values corresponding to the digit. Each pixel value ranges 

from 0 (black) to 255 (white). 

 In this stage, images are converted into data that the computer can interpret. First, each 

digit image is converted to a 28 by 28 matrix. Second, all of the pixel values are put into a list. 

Third, each pixel value is divided by 255 to normalize the list to values between 0 and 1. Figure 

2 demonstrates this process. 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 63 171 253 253 170 63 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 73 73 176 237 253 252 252 252 238 175 21 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 27 120 252 252 252 252 237 215 221 252 253 252 71 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 181 252 252 252 252 252 62 0 16 190 253 252 71 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 119 252 205 103 0 0 0 0 16 191 253 252 71 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 5 35 20 0 0 0 0 0 37 252 253 189 10 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 150 252 253 76 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 155 252 252 191 15 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 47 233 253 253 84 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 109 252 241 97 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 21 212 252 195 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 144 253 252 71 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 32 212 253 255 35 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 115 252 252 159 5 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 99 242 252 231 41 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 252 252 252 108 0 0 0 0 0 42 125 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 16 191 253 253 232 109 171 253 253 253 255 253 253 253 255 180 0 0 0 0 0
0 0 0 0 0 0 0 161 252 252 252 252 252 253 252 252 252 253 252 252 252 180 128 0 0 0 0 0
0 0 0 0 0 0 0 155 236 252 252 252 252 237 215 195 71 72 71 71 71 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 62 252 210 128 252 62 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 
0 
0 . . . 
63 
171 
253 . . . 
0 
0 
0 

0	
0	
0	. . . 

0.247	
0.671	
0.992	. . . 
0	
0	
0	
	

784 
Total 

Handwritten Digit Pixel Values as 28x28 Matrix Pixel Values as 
784x1 List 

Input Vector to 
Neural Network 
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 The 42,000 labeled digits were divided into 30,000 training examples and 12,000 testing 

examples. The training examples are used to develop the predictive model, and the testing 

examples are used to evaluate the performance of the model. 

 

5.2 Neural Network Structure 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
This neural network structure consists of three layers. Each neuron in the network is a 

function that outputs a value between 0 and 1 depending on the outputs of all the neurons in the 

previous layer. The first layer outputs the data of the digits after processing and the last layer’s 

output indicates a confidence that the given image corresponds to each digit 0 through 9. There 

Figure 3: Neural Network Diagram 
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are a total of 40 biases and 23,820 weights in this network that can be adjusted. Each weight is 

initialized to a random number between -0.01 and 0.01. Each bias is initialized to 0. 

 

 
5.3 Training 

 
A single training iteration exposes the neural network to the entire training dataset, and 

this consists of forward propagation and backward propagation. Training is done through a 

process called gradient descent. During forward propagation, each digit input vector in the 

training dataset is sent through the neural network and predictions are made. During backward 

propagation, the weights and biases of the neural network adjust to minimize error. 

 
Forward Propagation: 
 

During forward propagation, each of the digit input vectors is sent through the neural 

network. First, each neuron receives a weighted sum of the output from the previous layer. Then, 

each neuron activates depending on its input; the sigmoid function outputs a value between 0 and 

1. These operations are performed with matrices.  
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Backward Propagation: 
 

The goal of backward propagation is to minimize the error function. The error function 

used is cross-entropy cost [4]: 

	

 
 
 
M is the number of training examples 
y is a 10 by 1 target matrix that corresponds to the label of a digit (the expectation as to what the 
neural network should output) 
a(2) is a 10 by 1 matrix that contains the activations of the output layer (confidences of a digit) 
 
 
 To minimize the cost function, the algorithm calculates the derivatives of the cost with 

respect to each adjustable parameter in the model: w2, b2, w1, b1 using chain rule. 

 
Ex: 
 

 
 
 
Then, those parameters are adjusted in the direction to minimize the cost. 
 
Ex: 

 
 
w2 contains adjustable parameters in the model. 
a is the learning rate and determines the leap size during gradient descent. 

 is the derivative of the cost function with respect to w2 
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6.  Performance Analysis and Optimization 
 

6.1 Accuracy and Error Graphs 
 

 To evaluate the performance, the accuracy on the training set, the accuracy on the testing 

dataset, and the cost were graphed as a function of training iterations. 

 

 

 

 

 
 
 

 
 

 
 
 
 

 

 

 

 

 

 

 

 The shape of the graph in Figure 6 decreases quickly during the initial iterations and 

gradually flattens out. The shape of the graphs in Figures 4 and 5 increase quickly during the 

Figure 4: Plot of testing accuracy after 10 training 
iterations 

Figure 5: Plot of testing and training accuracy 
after 100 training iterations 

Figure 6: Plot of cost (error) per digit after 100 
training iterations 
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initial iterations and gradually flatten out. As the parameters update to reach a minimum of error, 

the derivative of the cost function with respect to each parameter was expected to be, on average, 

flatter. Thus, the neural network was expected to learn at a gradually decreasing rate. These 

results demonstrate the neural network is effectively being trained on the dataset. 

 
6.2 Optimization 

 

To optimize the neural network, the number of hidden neurons was varied in the neural 

network. 

 
 
 
 
Figure 7: Accuracy on test dataset after 100 training iterations for varying number of 

hidden neurons. 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8: Comparison to other published methods [1] 

 

 The best performing structure was the neural network with 270 hidden neurons. After 100 

training iterations, it correctly classified 97.4% of the test dataset. A possible explanation for 

why the accuracy of the neural network structure with 810 hidden neurons was lower than the 
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that of 270 hidden neurons could be due to overfitting. Overfitting occurs when a model learns 

the patterns and noise in training data to the extent that it negatively impacts accuracy on data it 

has never seen. 

 

6.3 Applying the Model to the Real World 
 

To test the model on my own handwritten digits, the following steps were conducted. 

First, a digit was handwritten on a piece of paper using a pen. Second, a PNG image file of the 

digit was scanned by creating a signature in the desktop application Preview. Third, code was 

written to load the digit into the program and process from an image file to an input vector.  

Fourth, the input vector was sent through the neural network (forward propagation) and it 

produced a prediction. The figures below display the handwritten digit after scanning and the 

neural network’s confidences given that digit.  

 

  
 
 
 
 
 
 
 
 
 
 

Figure 9: Scanned handwritten digit and output layer activation (digit confidences) 
bar plot from model 
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7.  Conclusion 
 

During this project, a neural network was implemented that could accurately classify 

digits from the MNIST dataset. This algorithm was programmed in Anaconda Python without 

any neural network libraries. Future projects could possibly improve the accuracy of this neural 

network by varying the number of hidden layers or by implementing more advanced techniques 

(regularization, deep learning). In addition, future projects could train the model using different 

or more complex datasets containing letters, symbols, shapes, etc. Even further, applications of 

this technique include reading addresses on postage, processing images of checks, and 

autonomous vehicles.  
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10. Source Code 
 

Code was written in Anaconda Python using Jupyter Notebook. 
In [1]: 

 
   #Load the csv file into a numpy data matrix 

import numpy as np 

import matplotlib.pyplot as plt 

import csv 

 

data = [] # Create empty data matrix 

 

#Load csv file into data ---  

with open('digitData.csv') as csvfile:  

    readCSV = csv.reader(csvfile, delimiter=',') 

    for row in readCSV: 

        if len(row) != 0: 

            data = data + [row] 

#--- 

 

data =  np.asarray(data) #Convert the regular array to numpy array 

print(data) 

print("done") 

[['label' 'pixel0' 'pixel1' ... 'pixel781' 'pixel782' 'pixel783'] 
 ['1' '0' '0' ... '0' '0' '0'] 
 ['0' '0' '0' ... '0' '0' '0'] 
 ... 
 ['7' '0' '0' ... '0' '0' '0'] 
 ['6' '0' '0' ... '0' '0' '0'] 
 ['9' '0' '0' ... '0' '0' '0']] 
done 

In [2]: 

#Visualize original digits  

displayPixelValues = data[23][1:]  #Gather all pixel values from first dat
a point 

 

displayPixelValues = np.reshape(displayPixelValues, (-1, 28)) #Reshape dat
a to 28 by 28 array instead of 784 by 1 array 

displayPixelValues = displayPixelValues.astype(np.int) #Convert the data i
nto integers from strings 

#print(displayPixelValues) #Print out array of single digit 
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plt.matshow(displayPixelValues, fignum=10,cmap=plt.cm.gray) #Make grayscal
e representation of digit 

plt.show() #Show grayscale representation of digit 

 
In [3]: 

#Sigmoid function 

def sigmoid(x): 

    return 1/(1+np.exp(-x)) 

In [4]: 

np.random.seed(2)  

 

layer0_neurons = 784 #Number of pixels = 784 

layer1_neurons = 270 #Number of middle layer neurons. I picked 30 for now 

layer2_neurons = 10 #Output neurons here.  

                    #The activation of the output neurons are the "guesses
" 

#Initialize random weights and biases 

 

layer1_b = np.zeros((layer1_neurons,1))#Initialize layer_1 biases to 0. Th
is is a 270 by 1 matrix 

layer1_w = (2*np.random.random((layer1_neurons,layer0_neurons)) - 1) / 100 
#Initialize layer_1 weights to a value between -.01 and .01 This is a 270 
by 784 matrix 

layer2_b = np.zeros((layer2_neurons,1)) #Initialize layer_2 biases to 0. T
his is a 10 by 1 matrix 

layer2_w = (2*np.random.random((layer2_neurons,layer1_neurons)) - 1) / 100 
#Initialize layer_2 weights to to a value between -.01 and .01 This is a 1
0 by 270 matrix 

In [5]: 

#Function evaluates accuracy given predictions, targets, weights, and bias
es 

def evaluateNetworkAccuracy(x,y,w1,b1,w2,b2): 

    z_1 = np.dot(w1,x)+b1 

    a_1 = sigmoid(z_1) 
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    z_2 = np.dot(w2,a_1)+b2 

    a_2 = sigmoid(z_2) 

 

    predictions = np.argmax(a_2, axis = 0) 

    #print(predictions) 

     

    return(np.sum(np.equal(y,predictions))/len(y)) 

In [6]: 

#Separation of training (Xdata) and testing (Xtest) digits 

 

trainingSize = 30000 #Number of training sample 

Xdata = data[1:trainingSize+1,1:] #Get pixel values of data samples 

Xdata = Xdata.T #Transpose - Make columns rows and rows columns 

Xdata = Xdata.astype(np.int) #Convert values from string to integer 

Xdata = Xdata/255 #Remap grayscale values (normalize) 

 

Xtest = data[trainingSize+1:,1:] 

Xtest = Xtest.T #Transpose - Make columns rows and rows columns 

Xtest = Xtest.astype(np.int) #Convert values from string to integer 

Xtest = Xtest/255 #Remap grayscale values (normalize) 

 

labels = data[1:,0].astype(np.int)  #Get labels of each digit an numpy lis
t 

 

Xdata.shape 

Out[6]: 
(784, 30000) 

In [7]: 

#Cost function; If labels highly differ from targets, cost is high 

def cross_entropy_cost(y, a): 

    error = np.multiply(y,np.log(a)) + np.multiply((1-y),np.log((1-a))) 

    errorSum = np.sum(error) 

    meanErrorSum = -errorSum/(y.shape[1]) 

    return meanErrorSum 

In [7]: 

#Get target matricies from labels 

nData = len(data) - 1 

target = np.zeros([10,nData]) 

for i in range(nData): 

    target[labels[i],i] = 1 
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trainingTarget = target[:,:trainingSize]  

testTarget = target[:,trainingSize:]  

In [8]: 

accList=[] #List keeps track of training accuracy 

testAccList = [] #List keeps track of test accuracy 

def trackAccuracyAndCost(): 

    cost = cross_entropy_cost(batchTarget,a_2) 

    costList.append(cost) 

    #print(cost) 

    acc = evaluateNetworkAccuracy(Xdata,labels[0:trainingSize],layer1_w,la
yer1_b,layer2_w,layer2_b) 

    accList.append(acc) 

 

    testAcc = evaluateNetworkAccuracy(Xtest,labels[trainingSize:],layer1_w
,layer1_b,layer2_w,layer2_b) 

    testAccList.append(testAcc) 

In [11]: 

accList=[] #List keeps track of training accuracy 

testAccList = [] #List keeps track of test accuracy 

costList = [] #List keeps track of cost 

 

#Initialize random weights and biases 

layer1_b = np.zeros((layer1_neurons,1))#Initialize layer_1 biases to 0. Th
is is a 784 by 1 matrix 

layer1_w = (2*np.random.random((layer1_neurons,layer0_neurons)) - 1) /100 
#Initialize layer_1 weights to a value between -.01 and .01 This is a 30 b
y 784 matrix 

layer2_b = np.zeros((layer2_neurons,1)) #Initialize layer_2 biases to 0. T
his is a 30 by 1 matrix 

layer2_w = (2*np.random.random((layer2_neurons,layer1_neurons)) - 1) /100 
#Initialize layer_2 weights to to a value between -.01 and .01 This is a 1
0 by 30 matrix 

 

iterations = 9 #Number of times NN is exposed to entire dataset 

chunkSize = 256 #Number in digits in a batch 

learningRate = 0.00075 

 

#Calculate Accuracy before training (Iteration 0) 

acc = evaluateNetworkAccuracy(Xdata,labels[0:trainingSize],layer1_w,layer1
_b,layer2_w,layer2_b) 

accList.append(acc) 

testAcc = evaluateNetworkAccuracy(Xtest,labels[trainingSize:],layer1_w,lay
er1_b,layer2_w,layer2_b) 

testAccList.append(testAcc) 
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print('Iter 0','Training Accuracy: ',acc,'Testing Accuracy: ', testAcc) 

 

for i in range(1, iterations+1): 

    chunk = chunkSize 

    while(chunk <= trainingSize): 

        batch       = Xdata[:,chunk - chunkSize: chunk] #Get batch of trai
ning data 

        batchTarget = target[:,chunk - chunkSize: chunk] #Get targets of b
atch 

         

         

         

         

        #Forward Propagation 

        z_1 = np.dot(layer1_w,batch)+layer1_b 

        a_1 = sigmoid(z_1) 

        z_2 = np.dot(layer2_w,a_1)+layer2_b 

        a_2 = sigmoid(z_2) 

 

        #Back Propagation: Derivative Calculations 

        der_a2 = -np.divide(batchTarget,a_2) + np.divide(1-batchTarget, 1-
a_2) 

        der_z2 = der_a2*a_2*(1-a_2) 

        der_w2 = np.dot(der_z2,a_1.T) 

        der_b2 = np.sum(der_z2,axis = 1,keepdims=True)/trainingSize 

        der_a1 = np.dot(layer2_w.T,der_z2) 

        der_z1 = der_a1*a_1*(1-a_1) 

        der_w1 = np.dot(der_z1,batch.T) 

        der_b1 = np.sum(der_z1,axis = 1,keepdims=True)/trainingSize 

 

        #Back Propagation: Parameter Update 

        layer2_w = layer2_w - learningRate*der_w2 

        layer2_b = layer2_b - learningRate*der_b2 

        layer1_w = layer1_w - learningRate*der_w1 

        layer1_b = layer1_b - learningRate*der_b1 

         

        chunk+=100 

    if(i % 1 == 0): 

        cost = cross_entropy_cost(batchTarget,a_2) 

        acc = evaluateNetworkAccuracy(Xdata,labels[0:trainingSize],layer1_
w,layer1_b,layer2_w,layer2_b) 
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        testAcc = evaluateNetworkAccuracy(Xtest,labels[trainingSize:],laye
r1_w,layer1_b,layer2_w,layer2_b) 

        trackAccuracyAndCost() 

        print('Iter',i,'Training Accuracy: ', acc,'Testing Accuracy: ', te
stAcc) 

         

Iter 0 Training Accuracy:  0.11106666666666666 Testing Accuracy:  0.112666
66666666666 
Iter 1 Training Accuracy:  0.8087333333333333 Testing Accuracy:  0.8061666
666666667 
Iter 2 Training Accuracy:  0.8776333333333334 Testing Accuracy:  0.8761666
666666666 
Iter 3 Training Accuracy:  0.8946666666666667 Testing Accuracy:  0.8946666
666666667 
Iter 4 Training Accuracy:  0.9033666666666667 Testing Accuracy:  0.90425 
Iter 5 Training Accuracy:  0.9096666666666666 Testing Accuracy:  0.90875 
Iter 6 Training Accuracy:  0.9145 Testing Accuracy:  0.9120833333333334 
Iter 7 Training Accuracy:  0.9185666666666666 Testing Accuracy:  0.9163333
333333333 
Iter 8 Training Accuracy:  0.9227666666666666 Testing Accuracy:  0.9196666
666666666 
Iter 9 Training Accuracy:  0.9261 Testing Accuracy:  0.9245 

In [11]: 

#Display Accuracy Plot 

plt.plot(np.arange(0,10,1), testAccList) 

plt.suptitle('Accuracy vs Training Iterations') 

plt.ylabel('Cost') 

plt.xlabel('Iterations') 

plt.ylim((0,1)) 

plt.show() 

 
In [68]: 
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from PIL import Image 

im = Image.open("userImage11.png") 

 

#im.show() 

digitArray = np.asarray(list(im.getdata())) 

userDigit = [] 

for i in range(len(digitArray)):  
    pixel = digitArray[i] 

    #print(pixel) 

    pixelBrightness = pixel[0]*0.299 + pixel[1]*0.587 + pixel[2]*0.114 

    pixelBrightness = (-(pixelBrightness) + 255) 

    userDigit.append(pixelBrightness) 

maxVal = np.max(userDigit) 

userDigit = userDigit/maxVal 

userDigit = np.reshape(userDigit, (-1, 1)) 

userDigit = np.power(userDigit, .25) 

displayUserDigit = np.reshape(userDigit, (-1, 28)) #Reshape data to 28 by 
28 array instead of 784 by 1 array 

 

plt.matshow(displayUserDigit, fignum=10,cmap=plt.cm.gray) #Make grayscale 
representation of digit 

plt.show() #Show grayscale representation of digit 

 
In [69]: 

def blur(input_image): 

    input_shape = input_image.shape 

    output_image = np.zeros(input_shape) + input_image 

    n_row = input_image.shape[0] 

    n_col = input_image.shape[1] 
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    for i in range(n_row): 

        for j in range(n_col): 

            pixelVal = input_image[i,j] 

            pixel_add = pixelVal * 1 

             

            if i >0: 

                pixel_top = (i-1, j) 

                output_image[i-1,j] += pixel_add 

            if i < n_row-1: 

                pixel_bot = (i+1, j) 

                output_image[i+1,j] += pixel_add 

            if j > 0 : 

                pixel_left = (i, j-1) 

                output_image[i,j-1] += pixel_add 

            if j < n_col -1: 

                pixel_right = (i,j+1) 

                output_image[i,j+1] += pixel_add 

    return output_image / np.max(output_image) 

In [70]: 

processedImage = blur(displayUserDigit) 

#processedImage = blur(processedImage) #blur again if wanted 

plt.matshow(processedImage, cmap=plt.cm.gray) #Make grayscale representati
on of digit 

plt.show() #Show grayscale representation of digit 

testImage = np.reshape(processedImage, ( 784,1))  

testImage = np.power(testImage, .75) 
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In [71]: 

 

 

#Forward propagation of user's digit 

z_1 = np.dot(layer1_w,testImage)+layer1_b 

a_1 = sigmoid(z_1) 

z_2 = np.dot(layer2_w,a_1)+layer2_b 

a_2 = sigmoid(z_2) 

In [72]: 

#Display confidences (aka guesses) for the given digit by the user 

x = ['0','1','2','3','4','5','6','7','8','9'] 

plt.bar(x,a_2[:,0]) 

plt.title('Digit Confidences') 

plt.ylabel('Output Activation Value') 

plt.xlabel('Digit') 

plt.ylim([0,1]) 

plt.show() 

 


